# РОССИЙСКАЯ ФЕДЕРАЦИЯ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

| Кафедра «Архитектура» |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
| ТЕХНИЧЕСКИЙ ОТЧЕТ     |

по теме: «Исследование тепловых характеристик сверхтонкой теплоизоляции "Корунд $\mathbb{R}$ "»

# РОССИЙСКАЯ ФЕДЕРАЦИЯ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра «Архитектура»



# ТЕХНИЧЕСКОЕ ЗАКЛЮЧЕНИЕ

по теме: «Исследование тепловых характеристик сверхтонкой теплоизоляции "Корунд®"»

Договор № 407/09 от 15.10.2009 г.

Начальник Управления НИР ВолгГАСУ, к.т.н., доцент

В.И. Воробьев

Руководитель НИР д.т.н., профессор

Pors

А.Г. Перехоженцев

# Ответственные исполнители:

д.т.н., проф. Перехоженцев А.Г.

инж. Жуков А.Н.

зав.лаб. стр.физики инж. Лисицын С.А.

# СОДЕРЖАНИЕ

Введение.

- 1. Предварительное испытание покрытия Корунд® при нагреве.
- 2. Сравнительное лабораторное испытание теплоотдачи трубопроводов.
- 3. Исследование теплозащитных свойств покрытия "Корунд®" в натурных условиях.
- 4. Исследование температурного режима стеновых керамзитобетонных панелей с покрытием "Корунд®-Фасад".
- 5. Заключение.

## **ВВЕДЕНИЕ**

В настоящее время на российском рынке строительных материалов появляется огромное количество новых жидких сверхтонких теплоизоляционных материалов. Жидкий утеплитель представляет собой суспензию на основе структурированных акриловых полимеров. Наполнителем и теплоизолирующей составляющей в них являются мельчайшие стеклянные и керамические капсулы, внутри которых находится вакуум (или инертный газ).

Целью настоящей работы является исследование теплозащитных свойств, а именно  $\underline{коэффициента\ mennonposodнocmu}$  одной из широко применяемых на практике жидкой теплоизоляционной композиции торговой марки «Корунд $\mathbb{R}$ ».

Главным уникальным теплоизоляционным свойством данного жидкого утеплителя (по заявлению производителей) является значение коэффициента теплопроводности  $\lambda = 0.0012$   $Bm/(m\cdot ^{\circ}C)$ .

Жидкие керамические теплоизоляционные покрытия серии Корунд® состоят из высококачественного акрилового связующего, оригинальной разработанной композиции катализаторов и фиксаторов, керамических сверхтонкостенных микросфер с разряженным воздухом. Корунд®, представляя собой многокомпонентную смесь, характеризуется прежде всего природой и видом полимерного связующего. И особое значение имеет выбор водорастворимого полимера, что позволяет не использовать токсичные растворители, что в свою очередь повышает экологичность и пожаробезопасность покрытия. Наиболее перспективным является полимерные связующие на основе синтетических латексов. Помимо основного состава в материал вводятся специальные добавки, которые исключают появление коррозии на поверхности металла и образование грибка в условиях повышенной влажности на бетонных поверхностях. Эта комбинация делает материал легким, гибким, растяжимым, обладающим отличной адгезией к покрываемым поверхностям. Материал по консистенции напоминающий обычную краску, является суспензией белого цвета, которую можно наносить на любую поверхность. После высыхания образуется эластичное полимерное покрытие, которое обладает уникальными сравнению традиционными ПО c изоляторами теплоизоляционными свойствами и обеспечивает антикоррозийную защиту. Уникальность изоляционных свойств Корунд® - результат интенсивного молекулярного воздействия разреженного воздуха, находящегося в полых сферах. Материал **Корунд®** имеет несколько модификаций: Корунд® Классик (универсальная базовая композиция), Корунд® Антикор (специальная композиция для металла), Корунд® Зима (возможность применения и нанесения при температуре -20°C), Корунд® Фасад (для утепления отдельных элементов зданий).

Материал **Корунд**® широко применяется в различных отраслях строительства и промышленности. К примеру, антикоррозийная обработка резервуаров и емкостей, снижение температуры тепловых источников (окраска теплопроводов) и многое другое.

Особенности композиции **Корунд®**:

- 1. Можно наносить на металл, пластик, бетон, кирпич и другие строительные материалы, а также на оборудование, трубопроводы горячей и холодной воды, воздуховоды и т. п.
- 2. Имеют прочную и стабильную адгезию к металлу, пластику, пропилену, что позволяет изолировать покрываемую поверхность от доступа воды и воздуха.
- 3. Покрытия обеспечивают защиту поверхности от воздействия влаги, атмосферных осадков и перепадов температуры.
- 4. Предохраняет поверхность от образования конденсата.

- 5. Наносятся на поверхность любой формы.
- 6. Обеспечивают постоянный доступ к осмотру изолированной поверхности без необходимости остановки производства, простоев, связанных с ремонтом, и сбоями в работе производственного оборудования.
- 7. Быстрая процедура нанесения покрытий.
- 8. Легко ремонтируются и восстанавливаются.
- 9. Время полного высыхания одного слоя 24 часа.

С целью исследования и проверки теплофизических свойств данного *жидкокерамического теплоизоляционного покрытия* «Корунд®» в период с октября 2009 года по апрель 2011г. были проведены следующие исследования, на основании которых были сделаны определённые выводы и рекомендации.

Для эксперимента заказчиком предоставлены жидкокерамические композиции Корунд®-Классик и Корунд®-Фасад.

# 1. Предварительное испытание теплоизоляционного покрытия «Корунд®»

# Цель и задача эксперимента:

В отличие от большинства теплоизоляционных материалов жидкие керамические теплоизоляционные покрытия серии «Корунд®» работают по принципу низкой теплоотдачи с поверхности. Наиболее простым способом показать специфичность принципа действия ЖКТ Корунд® являются следующие эксперименты:

1 часть — нанести материал Корунд® на горячую металлическую пластину, с температурой +100 C, (использовать для этого специальную лабораторную плитку с возможностью точного регулирования температуры нагрева) и провести замер температуры различными приборами (различными по методу измерения и принципу действия) на поверхности теплоизоляционного покрытия Корунд.

2 часть — поместить на Корунд® различные материалы - такие как металл, акриловая краска, силиконовая краска, акриловый клей, бумага, флизелиновые обои (на универсальном клее), шпатлевка, гофрокартон, цементно-песчаная штукатурка, керамическая плитка, пенопласт толщиной 1мм. Далее при одинаковом температурном режиме (на плитке температура +100 °C) замерить температуру на поверхности данных материалов, нанесенных на покрытие Корунд®.

### 1.1 Замер температуры теплоизоляционного слоя Корунд различными приборами

### 1.1.1 Общие данные:

На металлическую платину толщиной 3 мм нанесено теплоизоляционное покрытие Корунд® толщиной 1 мм. Размер пластины 300х400 мм. Нанесение теплоизоляционного покрытия производилось кистью слоями по 0,3 мм с межслойной сушкой 24 часа.

Измерения проводилисья всеми приборами примерно в одной области сначала на непокрытой части пластины, затем аналогично всеми приборами на участке теплоизолированном жидкой теплоизоляцией Корунд®.

### 1.1.2 Используемое оборудование:

- 1. Стальная пластина толщиной 3 мм, покрытая теплоизоляционным покрытием Корунд® (толщиной 2 мм);
  - 2. Плитка нагревательная лабораторная (с точностью изменения температура до 0,1 °C);
  - 3. Измеритель температуры Elcometer 319;
  - 4. Термощуп Термо-5;
  - 5. Контактный термометр ТК-04.5;
  - 5. Пирометр;
  - 6. ИТП  $M\Gamma$ -4 «Поток».

#### 1.1.3 Методика проведения испытаний:

- 1. Подготовка металлической пластины толщиной 3 мм, с нанесенным теплоизоляционным покрытием Корунд® Классик толщиной 1,5 мм (размер пластины 30х40 см);
- 2. Установка на поверхность нагревательного элемента плитки стальной пластины с нанесенным покрытием Корунд®;
  - 3. Включение нагревательного элемента лабораторной плитки;
  - 4. Нагрев лабораторной плитки до температуры +100 °C;
- 5. Установка датчиков приборов на поверхность теплоизоляционного покрытия Kopyhg®.

- 6. Ожидание стабилизации показаний каждого прибора;
- 7. Фиксирование показаний всех используемых приборов (рис.1.1);
- 8. Отключение лабораторной плиты.

Результаты эксперимента занесены в таблицу 1.1.





Рис. 1.1 — Замер температуры на поверхности теплоизоляционного слоя Корунд® разными приборами.

Таблица 1.1 **Результаты измерения температуры поверхности образца** 

| Прибор                       | Температура на поверхности теплоизолированного участка, °C | Температура на поверхности неизолированного участка, °C |
|------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| Контактный термометр ТК-04.5 | 75,4                                                       | 100                                                     |
| Термощуп Термо-5             | 52,5                                                       | 98                                                      |
| Elcometer 319                | 44,7                                                       | 99 (с доп. датчиком)                                    |
| Пирометр                     | 73,6                                                       | 97                                                      |
| ИТП МГ-4 «Поток»             | 65,9                                                       | 100                                                     |

Данный опыт наглядно показывает, что различные приборы в зависимости от их принципа действия (контактные, бесконтактные и т.д.) имеют различные показания температуры именно на поверхности теплоизоляционного покрытия Корунд®.

Это объясняется тем, что материал Корунд® работает по принципу низкой теплоотдачи с поверхности, а не как стандартные утеплители — путем слабого пропускания тепла. И это только подтверждает, что теплоотдача с поверхности сильно зависит от того, с каким материалом соприкасается данная поверхность (в отличии от традиционных теплоизоляционных материалов, у которых совершенно другой принцип работы, не зависящий от того, с каким материалом они соприкасаются). Из данного эксперимента можно сделать вывод, что материалы с высоким тепловосприятием (особенно такие материалы, как металл)

радикально увеличивают теплоотдачу с поверхности покрытия Корунд®. И фактически контактные приборы (с обычной термопарой), имея металлический наконечник, показывают температуру с учетом сильного нагрева металла на поверхности теплоизоляционного слоя Корунд®.

# 1.2 Замер температуры различных материалов на поверхности теплоизоляционного слоя Корунд®.

#### 1.2.1 Общие данные:

На металлическую платину толщиной 3 мм нанесено теплоизоляционное покрытие Корунд® толщиной 1,5 мм. Размер пластины 300х400 мм. Нанесение теплоизоляционного покрытия производилось кистью слоями по 0,3 мм с межслойной сушкой 24 часа.

Далее на теплоизоляционное покрытие Корунд® были нанесены различные покрытия: металл, акриловая краска, силиконовая краска, акриловый клей, бумага, флизелиновые обои (на универсальном клее), шпатлевка, гофрокортон, цементно-песчаная штукатурка, керамическая плитка, пенопласт толщиной 1мм.

Опыт заключается в установке пластины с покрытием Корунд® и различных материалов на нагревательный элемент лабораторной плиты, разогретой до +80 °C и замер температуры на поверхности чистого теплоизоляционного покрытия Корунд®, а также на поверхности всех материалов, нанесенных поверх теплоизоляционного покрытия Корунд® (рис.1.2).

Измерения проводятся при помощи прибора Elcometer 319.

### 1.2.2 Используемое оборудование:

- 1. Стальная пластина толщиной 3 мм, покрытая теплоизоляционным покрытием Корунд® (толщиной 1 мм) и нанесенным поверх покрытия Корунд® различными материалами (см. п. 1.2.1)
  - 2. Плитка нагревательная лабораторная (с точностью изменения температура до 0,1 °C);
  - 3. Измеритель температуры Elcometer 319;



Рис. 1.2 — Измерение температуры на поверхности теплоизоляционного слоя Корунд®

# 1.2.3 Методика проведения испытаний:

- 1. Установка подготовленной пластины на нагревательный элемент плитки.
- 2. Нагрев до температуры +100 °C

3. Снятие показаний температур на поверхности покрытия Корунд®, а также всех материалов, нанесенных поверх теплоизоляционного слоя.

Результаты эксперимента занесены в таблицу 1.2.

Таблица 1.2 Результаты измерений различных поверхностей образца

| 47,3 |
|------|
| 49,4 |
| 57   |
| 62,1 |
| 48   |
| 48,4 |
| 45   |
| 54   |
| 53,6 |
| 59,6 |
| 47   |
| 46   |
|      |

Данный эксперимент наглядно показывает, что температура на поверхности различных материалов, нанесенных поверх материала Корунд® изменяется в зависимости от свойств нанесенного материала. Кроме того, данный опыт подтверждает принцип действия теплоизолирующего покрытия Корунд® — низкая теплоотдача с поверхности, которая в свою очередь в большой степени зависит от того, с каким материалом соприкасается поверхность Корунд®.

Из таблицы 1.2 видно, что теплоотдача в металл максимальная и металлические предметы, соприкасающиеся с поверхностью покрытия Корунд®, нагреваются до температуры близкой к той температуре, которая находится под покрытием Корунд®.

В то же время теплоотдача, к примеру, в акриловую краску на водной основе или флизилиновые обои практически не изменяется.

Это говорит о том, что покрытие Корунд корректно использовать в качестве финишного покрытия. В случае технологической или декоративной необходимости наносить поверх покрытия Корунд различных материалов необходимо учитывать их теплофизические показатели.

#### Вывод:

По результатам проведенных испытаний можно сделать вывод, что большинство контактных приборов для измерения температуры имеет металлический датчик, который обладает повышенным тепловосприятием и теплоотдача в него возрастает, что объясняет причину получения ошибочных результатов температуры на поверхности ЖКТ Корунд® при помощи контактных термометров и термопар (с металлическими измерительными наконечниками). Металлические датчики обладая повышенным тепловосприятием нагреваются до температуры в 1,5-2,5 раза выше, чем реальная температура поверхности Корунд®, что приводит к некорректным результатам на дисплее прибора.

Это ключевой момент, который необходимо учитывать при проведении последующих испытаний (особенно это важно при выборе средств измерения). Основываясь на данных, полученных в ходе испытания в последствии для контроля тепловых характеристик на поверхности теплоизоляционного покрытия «Корунд®» используется прибор Elcometer 319.

# <u>2. СРАВНИТЕЛЬНОЕ ЛАБОРАТОРНОЕ ИСПЫТАНИЕ ТЕПЛООТДАЧИ ТРУБОПРОВОДОВ.</u>

#### 2.1 Общие данные:

Цель данного испытания — определение плотности теплового потока теплоизолированного и не теплоизолированного участков трубопроводов диаметром 108 мм. На основании полученных данных определение коэффициента теплопроводности слоя теплоизоляционного покрытия.

Методика проведения испытаний описана далее и включает в себя подготовку и сбор испытательного стенда, нанесение на один из испытуемых участков жидкого теплоизоляционного покрытия Корунд® (ТУ 5760-001-83663241-2008) общей толщиной 1,5 мм, запуск испытательного стенда, проведение замеров температур и расходов воды через испытуемые участки трубопроводов, обработка полученных результатов.

Основные результаты сравнительных испытаний в виде таблиц и схем.

#### 2.2 Результаты сравнительных испытаний:

Испытания проводились спустя 8 часов после включения установки по достижении стационарного режима энергоносителя.

Вода, нагретая водонагревателем до стационарной температуры, проходит через испытуемый участок трубопровода и возвращается по обратному трубопроводу обратно в нагреватель. Схема сложного трубопровода — кольцевая или система с параллельным соединением труб.

Сравнительное испытание по определению теплоотдачи испытуемых участков трубопроводов проводились в учебно-исследовательской лаборатории при температуре воздуха +29 °C. Детальные результаты испытаний представлены далее.

# 2.3 Методика проведения испытаний и определения плотности теплового потока трубопроводов.

Испытания по определению плотности теплового потока теплоизолированного и не теплоизолированного трубопроводов проводились в испытательной лаборатории строительной физики Волгоградского Государственного Архитектурно-Строительного Университета на специально изготовленном стенде.

Испытания проводились при установившемся стационарном температурном режиме теплоносителя и расходе воды.

#### Устройство и принцип работы стенда

Принцип работы стенда основан на определении теплоносителя в подающем и обратном трубопроводах и расхода воды за один час через испытуемый участок трубопровода.

Стенд представляет собой три участка трубопровода диаметром 108 мм (длиной по 4 метра), расположенных друг над другом и подключенных посредством металлопластиковых трубопроводов. Регулирование и отключение подачи теплоносителя осуществляется шаровыми кранами. Нагрев водопроводной воды до постоянной температуры теплоносителя в подающих трубопроводах производится при помощи нагревательного котла. Постоянная циркуляция воды в отопительных приборах обеспечивается установленным на подающем трубопроводе циркуляционным насосом (рис.2.1).

Вода, нагретая водонагревателем до постоянной температуры, проходит через испытуемые участки трубопроводов диаметром 108 мм и возвращается по обратному трубопроводу. Схема подачи теплоносителя — двусторонняя.

Показания расходов воды фиксируются по расходомерам воды, установленным на обратных трубопроводах трех испытуемых участков. Температура теплоносителя определяется при помощи прибора Elcometer 319 со встроенным датчиком измерения температуры поверхности.

# Порядок проведения испытания:

- 1. На один из испытуемых участков трубопровода наносится теплоизоляционное покрытие Корунд® (ТУ 5760-001-83663241-2008). Нанесение осуществлялось сотрудником производителя при помощи малярной кисти слоями по 0,5 мм с межслойной сушкой 24 часа. Общая толщина слоя составила 1,5 мм.
- 2. Вся система заполняется водопроводной водой с помощью насоса и начинается циркуляция носителя.
- 3. Происходит нагрев теплоносителя с помощью нагревательного котла, работающего от электросети.
- 4. Определяются температуры теплоносителя в подающем и обратном трубопроводах теплоизолированного участка.
- 5. Определяются значения расходов воды через испытуемый участок трубопровода при помощи расходомера, установленного на обратном трубопроводе.
  - 6. Отчет времени, за которое происходит определение теплоотдачи на участке.
- 7. По истечении определенного времени снимаются показания расходов воды через теплоизолированный участок трубопровода.
- 8. Определяются показания средней температуры теплоносителя в подающем и обратном трубопроводах.
  - 9. Отключение стенда и подачи носителя.

Далее, аналогично производится испытание не теплоизолированного участка трубопровода.

#### Методика вычислений:

Количество теплоты, выделяемое участком трубопровода определяется по формуле:

$$Q = \frac{G_{\theta \partial} \cdot c_{\theta \partial} \cdot (t_{z} - t_{ox})}{3.6}$$
 (2.1),

где Q – количество теплоты, выделяемое участками трубопровода,  $B_{T}$ ;

 $c_{\rm вd}$  – удельная теплоемкость воды ( $c_{\rm вд}$  = 4,187 Дж/(кг·°С));

 $t_{c}$  — температура теплоносителя в подающем трубопроводе, °C;

 $t_{ox}$  — температура теплоносителя в обратном трубопроводе, °C;

 $G_{eo}$  — расход воды через испытуемый участок трубопровода, кг/ч.

Плотность теплового потока с 1 м2 испытуемого участка трубопровода, q определяется по формуле:

$$q = \frac{Q}{l \cdot \pi \cdot d} (2.2),$$

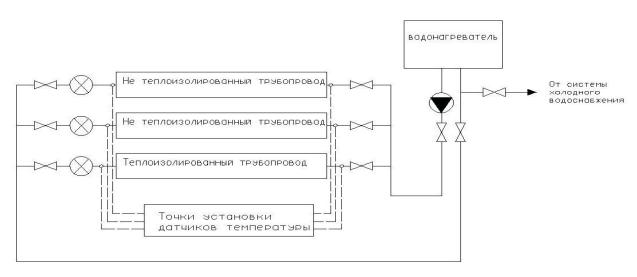
где l — длина испытуемого участка трубопровода, м; d — диаметр трубы, м.

Коэффициент теплоотдачи с поверхности определяется по формуле:

$$\alpha_{_H} = \frac{q_{nos}}{\tau - t_{\text{int}}} (2.3),$$

где  $q_{nos}$  — тепловой поток с 1 м2 трубопровода, Вт/м2;  $\tau$  — температура поверхности, °C;  $t_{int}$  — температура окружающей среды в помещении, °C.

Коэффициент теплопроводности материала определяется по формуле:


$$\lambda = \frac{\delta \cdot \alpha_{H} \cdot (\tau - t_{\text{int}})}{t_{G} - \tau}$$
 (2.4),

где  $\delta$  – толщина теплоизоляционного слоя Корунд®, м;  $t_{\rm s}$  — температура теплоносителя в трубопроводе (среднее значение), °C.

Результаты измерений представлены в таблице 2.1.



Рис. 2.1 — Общий вид испытательного стенда



УСЛОВНЫЕ ОБОЗНАЧЕНИЯ: Расходомер горячей воды

Вентиль регулировочный

Циркуляционный насос

Рис. 2.2 – Принципиальная схема испытательной установки

Таблица 2.1 **Результаты измерений участков трубопроводов** 

| Наименование показателей                                                                                                                                      | Теплоизолированный<br>участок | Нетеплоизолированный<br>участок |                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|------------------------------|
|                                                                                                                                                               | Участок №1                    | Участок №1                      | Участок №2                   |
| Средняя температура внутреннего воздуха в помещении на момент проведения испытаний $t_{int}$ , °C                                                             | 29                            | 29                              |                              |
| Температура теплоносителя на входе в испытуемый участок трубопровода, °С $t_{el}$ , °С $t_{e2}$ , °С $t_{e2}$ , °С $t_{e2}$ , °С $t_{e2}$ , °С $t_{ecp}$ , °С | 74,3<br>74,1<br>74,2<br>74,1  | 80,5<br>80,3<br>80,2<br>80,3    | 79,2<br>79,1<br>79,3<br>79,1 |
| Температура теплоносителя на выходе из испытуемого участка трубопровода, °С $t_{ox1}$ , °С $t_{ox2}$ , °С $t_{ox3}$ , °С $t_{ox5}$ , °С $t_{oxcp}$ , °С       | 73,8<br>73,9<br>73,7<br>73,8  | 73,0<br>73,3<br>73,2<br>73,1    | 72,3<br>72,0<br>72,5<br>72,3 |
| Температурный перепад ( $t_{rep} - t_{oxep}$ ), °С                                                                                                            | 0,3                           | 7,2                             | 6,8                          |
| Температура поверхности испытуемого участка трубопровода                                                                                                      | 50,0<br>48,7<br>49,1<br>49,2  | 71,5<br>65,9<br>71,1<br>69,5    | 64,4<br>64,7<br>64,4<br>64,5 |
| Расход воды через испытуемый участок $G_{so}$ , кг/ч                                                                                                          | 109                           | 124                             | 133                          |
| Количество теплоты, поступающей помещение от испытуемого участка трубопровода $Q_{np}$ , Вт                                                                   | 38,03                         | 1038,37                         | 1051,86                      |
| Плотность теплового потока 1 м2 испытуемого участка трубы при фактических показателях $q_{np}$ , $Bt/m2$                                                      | 28,04                         | 765,48                          | 775,71                       |

Обработка результатов измерений:

# Теплоизолированная труба участок №1:

1. Определяем количество теплоты по формуле 2.1:

$$Q = \frac{109 \cdot 4,187 \cdot (74,1 - 73,8)}{3.6} = 38,03 \, Bm$$

2. Определяем плотность теплового потока по формуле 2.2:

$$q = \frac{38,03}{4 \cdot 3,14 \cdot 0,108} = 28,04 \, Bm/M2$$

3. Определяем коэффициент теплоотдачи по формуле 2.3:

$$\alpha_{H} = \frac{28,04}{49,2-29} = 1,38 \, Bm/(M2 \cdot {}^{\circ}C)$$

4. Определяем коэффициент теплопроводности покрытия Корунд® по формуле 2.4:

$$\lambda = \frac{0.0015 \cdot 1.38 \cdot (49.2 - 29)}{(74.1 - 49.2)} = 0.0016 \ Bm/(M \cdot {}^{\circ}C)$$

### Не теплоизолированная труба участок №1:

1. Определяем количество теплоты по формуле 2.1:

$$Q = \frac{124 \cdot 4,187 \cdot (80,3 - 73,1)}{3.6} = 1038,37 \, Bm$$

2. Определяем плотность теплового потока по формуле 2.2:

$$q = \frac{1038,37}{4 \cdot 3,14 \cdot 0,108} = 765,48 \, Bm/M2$$

3. Определяем коэффициент теплоотдачи по формуле 2.3:

$$\alpha_{H} = \frac{765,48}{69,5-29} = 18,91 Bm/(M2.°C)$$

## Не теплоизолированная труба участок №2:

1. Определяем количество теплоты по формуле 2.1:

$$Q = \frac{133 \cdot 4,187 \cdot (79,1 - 72,3)}{3.6} = 1051,86 \text{ Bm}$$

2. Определяем плотность теплового потока по формуле 2.2:

$$q = \frac{1051,86}{4 \cdot 3,14 \cdot 0,108} = 775,71 \, Bm/M2$$

3. Определяем коэффициент теплоотдачи по формуле 2.3:

$$\alpha_{H} = \frac{775,71}{64,5-29} = 21,85 \, Bm/(M2.^{\circ}C)$$

#### Вывод:

По результатам данных сравнительных испытаний теплоотдачи трубопроводов получили следующие показатели:

- Теплоотдача 1 м2 теплоизолированного трубопровода (теплоизоляционное покрытие Корунд®, нанесенная толщиной 1,5 мм) диаметром 108 мм при фактических параметрах теплоносителя и температуры окружающей среды составила 28,04 Вт/м2;
- Теплоотдача 1 м2 не теплоизолированного трубопровода диаметром 108 мм при фактических параметрах теплоносителя и окружающей среды 765,48 Вm/м2;
- Коэффициент теплоотдачи с поверхности теплоизоляционного покрытия при данных условиях 1,38 Bm/(  $M2\cdot ^{\circ}C$ );
- Коэффициент теплопроводности теплоизоляционного покрытия Корунд® при данных параметрах теплоносителя и окружающей среды  $0.0016 \ Bm/(M\cdot ^{\circ}C)$ .

# 3. Исследование теплозащитных свойств покрытия "Корунд®" в натурных условиях

Результаты предыдущего эксперимента хорошо согласуются с данными натурных измерений, которые были проведены на открытом участке теплотрассы в Кировском районе г. Волгограда в феврале 2011 года (рис.3.1).

Длина окружности трубы = 108 см. Диаметр наружной поверхности трубы 320 мм Длина между точками 1 и 2 = 36 метров.

Температура воздуха  $T_{\text{окр.среды}} = -17,1$  °C

На данному участке производились замеры температуры на поверхности теплоизоляционного слоя Корунд® при помощи прибора Elcometer 319.



Рис. 3.1 — Общий вид открытого участка теплотрассы

В результате проведенных замеров температуры поверхности трубопровода (в начале и конце участка) были получены следующие значения:

температура неизолированной поверхности трубопровода в начале участка колеблется в районе 89,0-90,2 °C, в конце участка — 88,3-90,1 °C.

Температура на поверхности ЖКТ Корунд® — среднее значение +18,2°C.

В связи с отсутствием возможности измерить тепловой поток на трубопроводе по причине того, что имеющийся измеритель теплового потока имеет плоские датчики, а поверхность трубы имеет радиус 190 мм, вследствие этого образуется не полный контакт между поверхностью трубопровода и поверхностью датчика измерителя, что ведет к ошибочным результатам.

Поэтому был проведен базовый расчет по формулам теплопроводности, с учетом температуры на поверхности Корунд®:

Расчетная формула:

$$\lambda = \frac{\delta \cdot \alpha_{H} \cdot (\tau - t_{H})}{t_{R} - \tau}$$
 (3.1),

где  $\delta$  – толщина теплоизоляционного слоя Корунд® (в среднем 1,5 мм);

α<sub>н</sub> — коэффициент теплоотдачи от наружной поверхности теплоизоляционного слоя Корунд® (взят из предыдущего лабораторного измерения 1,38 Bт/м2 °C);

 $\tau$  — температура поверхности теплоизоляционного слоя Корунд®, °C;

t<sub>н</sub> — температура окружающего воздуха на момент проведения замеров, °C;

t<sub>в</sub> — температура энергоносителя в трубопроводе (в среднем — 90 °C);

Подставив значения в формулу 3.1 определим расчетный коэффициент теплопроводности теплоизоляционного слоя Корунд®:

$$\lambda = \frac{0,0015 \cdot 1,38 \cdot (18,2 - (-17,1))}{90 - 18,2} = 0,001 \,\mathrm{Br/(M \cdot ^{\circ}C)}$$

### Выводы:

Данные, полученные в ходе эксперимента подтверждаются официальным заключением от МУП «Волгоградское Коммунальное Хозяйство», в ведомстве которого находится данный объект (кроме того, в данном заключении подтверждается, что на участке потери температуры энергоносителя составляют 0 °C).

В результате обработки полученных значений можно сделать вывод о том, что расчетный коэффициент теплопроводности теплоизолирующего покрытия Корунд® составляет 0,001 Вт/м °С в рамках погрешностей, связанных с некорректностью измерения температуры на неизолированных участках (т.к. приборы фиксировали значение температуры в конце участка зачастую выше чем в начале), что вызвано неоднозначностью давления в трубопровода во время испытаний (т.к. испытания проводились в утреннее время, когда температура воздуха резко повышалась и на котельной давление соответственно изменялось). Для минимализации погрешностей рекомендуется данное испытание проводить в условиях статичной температуры окружающей среды. Необходимо также скорректировать (и замерить с большей точностью) расход энергоносителя на данном участке. Также следует учитывать, что на данном отрезке трубопровода имеются участки, где труба заглубляется в грунт и проходит подземно без также тепловой изоляции, вносит неточности измерения эффективности что теплоизоляционного слоя.

# 4. Исследование температурного режима стеновых керамзитобетонных панелей с покрытием "Корунд®-Фасад"

Натурные исследования проводились на одноэтажном бытовом здании из крупноразмерных керамзитобетонных стеновых панелей (рис.4.1). Толщина покрытия жидкой керамической теплоизоляцией "Корунд®-Фасад" составила 2 мм. Покрытие было нанесено в октябре 2010 года. Измерения проводились после зимнего периода в марте 2011 года. Результаты измерения приведены в таблицах 4.1 и 4.2.

# Оборудование:

- 1. Измеритель плотности потока ИТП МГ-4 "Поток".
- 2. Измеритель температуры, влажности «Термогигрометр».
- 3. Измеритель температуры, влажности «Testo».
- 4. Измеритель температуры поверхности Elcometer 319.



Рис. 4.1 — Керамзитобетонная стеновая панель с покрытием "Корунд® Фасад"

# 4.1 Измерение коэффициента теплопроводности керамзитобетонной панели толщиной 360 мм без покрытия "Корунд®-Фасад" (рис.4.2).

Таблица 4.1 Результаты измерений керамзитобетонной панели без покрытия

| Поток q "+" с  | Поток q "-" с  | Температура                     | Температура                     | Температура                  | Температура                 |
|----------------|----------------|---------------------------------|---------------------------------|------------------------------|-----------------------------|
| положительной  | отрицательной  | внутренней                      | наружной                        | внутри                       | на улице, t <sup>-</sup> °C |
| стороны, Вт/м2 | стороны, Вт/м2 | поверхности τ <sub>в</sub> , °С | поверхности τ <sub>н</sub> , °С | помещения, t <sup>+</sup> °C |                             |
| 26,6           | 13,5           | +13,1                           | -13,5                           | 14,5                         | -14,1                       |

$$\lambda^{\kappa/\delta} = \frac{\delta^{\kappa/\delta}}{\left(\frac{(t_{e} - t_{H})}{q} - \left(\frac{1}{\alpha_{e}} + \frac{1}{\alpha_{H}}\right)\right)} Bm/(M \cdot {}^{\circ}C) \quad (4.1),$$

где  $\delta_{\kappa/6}$  - толщина к/б панели = 0,360 м;

 $q_i$  – плотность теплового потока = 13,5 Bт/м<sup>2</sup>;

 $\alpha_{e}$  – коэффициент теплоотдачи внутренней поверхности = 19 Bт/м<sup>2</sup> · °C;

 $\alpha_{\rm H}$  – коэффициент теплоотдачи наружной поверхности = 22,5 Bт/м<sup>2</sup> · °C;

$$\lambda^{\kappa/\delta} = \frac{0,36}{\left(\frac{(14,5 - (-13,5)}{13,5} - \left(\frac{1}{19} + \frac{1}{22,5}\right)\right)} = 0,18 \frac{Bm/(M^{\circ}C)}{1}$$

Определим коэффициент теплоотдачи внутренней поверхности стены по формуле:

$$\alpha_{s} = \frac{q_{i}}{\left(t_{s} - \tau_{i}^{\kappa/\delta}\right)} Bm/(M2 \cdot {}^{\circ}C) \quad (4.2),$$

где  $\alpha_{\rm s}$  – коэффициент теплоотдачи внутренней поверхности;  $q_i$  – плотность теплового потока с положительной стороны = 26,6 Bт/м2;  $\tau^{\rm k/6}{}_i$  – температура на внутренней поверхности = +13,1 °C;  $t_{\rm s}$  – температура внутри помещения = +14,5 °C.

Подставив значения получаем:

$$\alpha_{6} = \frac{26.6}{(14.5 - 13.1)} = 19 \, Bm/(M2.°C)$$

Определим коэффициент теплоотдачи наружной поверхности стены по формуле:

$$\alpha_{H} = \frac{q_{i}}{\left(\tau_{i}^{K/\delta} - t_{i}\right)} Bm/(M2 \cdot {}^{\circ}C) \quad (4.3),$$

где  $\alpha_{H}$  – коэффициент теплоотдачи наружной поверхности;

 $q_i$  – плотность теплового потока с отрицательной стороны = 13,5 Bт/м2;

 $\tau^{\kappa/6}$  — температура на наружной поверхности керамзитобетонной панели = -13,5 °C;  $t_n$  — температура на улице = -14,1 °C.

Подставив значения получаем:

$$\alpha_{H} = \frac{13.5}{(-13.5 - (-14.1))} = 22.5 \ Bm/(M2.{}^{\circ}C)$$



Рис. 4.2 — Измерение плотности теплового потока q, температуры поверхности  $\tau^{\kappa/6}$  керамзитобетонной стеновой панели

# 4.2 Измерение коэффициента теплопроводности к/б панели толщиной 360 мм с покрытием теплоизоляцией "Корунд®" толщиной 2 мм (рис.4.3).

Таблица 4.2 Результаты измерений керамзитобетонной панели с покрытием теплоизоляции "Корунд®".

| Поток q "+" с  | Поток q "-" с  | Температура                     | Температура                     | Температура                  | Температура     |
|----------------|----------------|---------------------------------|---------------------------------|------------------------------|-----------------|
| положительной  | отрицательной  | внутренней                      | наружной                        | внутри                       | на улице, t⁻ °С |
| стороны, Вт/м2 | стороны, Вт/м2 | поверхности τ <sub>в</sub> , °С | поверхности τ <sub>н</sub> , °С | помещения, t <sup>+</sup> °C |                 |
| 39,4           | 1,5            | +15,9                           | -12,8                           | +19,2                        | -14,1           |

Определим коэффициент теплопроводности теплоизоляционного слоя Корунд® по формуле:

$$\lambda^{\kappa} = \frac{\delta^{\kappa}}{\left(\frac{(t_{g} - t_{H})}{q} - \left(\frac{1}{\alpha_{g}} + \frac{\delta^{\kappa/\delta}}{\lambda^{\kappa/\delta}} + \frac{1}{\alpha_{H}}\right)\right)} Bm/(M \cdot {}^{\circ}C) \quad (4.4),$$

где  $\delta_{\kappa}$  - толщина покрытия "Корунд®" = 0,002 м;

 $q_i$  – плотность теплового потока с отрицательной стороны = 1,5 Bт/м<sup>2</sup>;

 $\alpha_{\rm B}$  – коэффициент теплоотдачи внутренней поверхности = 12,15 Bt/(м² · °C);

 $\alpha_{\text{H}}$  – коэффициент теплоотдачи наружной поверхности = 1,15 Bt/(м² · °C);

$$\lambda^{\kappa} = \frac{0,002}{\left(\frac{(19,2-(-14,1))}{1,5} - \left(\frac{1}{11,94} + \frac{0,36}{0,18} + \frac{1}{1,15}\right)\right)} = 0,001$$

$$Bm/(M \cdot C)$$

Определим коэффициент теплоотдачи внутренней поверхности стены по формуле:

$$\alpha_{s} = \frac{q_{i}}{\left(t_{s} - \tau_{i}^{\kappa/\delta}\right)} Bm/(M2 \cdot {}^{\circ}C) \quad (4.5),$$

где  $\alpha_{\rm B}$  – коэффициент теплоотдачи внутренней поверхности;  $q_i$  – плотность теплового потока с положительной стороны = 39,4 Вт/м2;

 $\tau^{\kappa/6}_{i}$  — температура на внутренней поверхности = +15,9 °C;  $t_{6}$  — температура внутри помещения = +19,2 °C.

Подставив значения получим:

$$\alpha_{6} = \frac{39.4}{(19.2 - 15.9)} = 11.94 \ Bm/(M2.{}^{\circ}C)$$

Определим коэффициент теплоотдачи наружной поверхности стены по формуле:

$$\alpha_{H} = \frac{q_{i}}{\left(\tau_{i}^{K} - t_{H}\right)} Bm/(M2 \cdot {}^{\circ}C) \quad (4.6),$$

где  $\alpha_n$  — коэффициент теплоотдачи наружной поверхности;  $q_i$  — плотность теплового потока с отрицательной стороны = 1,5 Bt/м2;  $\tau^{\kappa_i}$  — температура на наружной поверхности покрытия "Корунд®" = -12,8 °C;  $t_n$  — температура на улице = -14,1 °C.

Подставив значения, получим:

$$\alpha_{H} = \frac{1.5}{(-12.8 - (-14.1))} = 1.15 \ Bm/(M2 \cdot {}^{\circ}C)$$



Рис. 4.3 — Измерение плотности теплового потока q, температуры поверхности  $\tau \kappa$  "Корунд $\mathbb{R}$ "

#### Выводы:

В результате обработки полученных данных в ходе испытаний получено значение коэффициента теплопроводности теплоизоляционного слоя Корунд® Фасад —  $0.001~Bm/M \cdot {}^{\circ}C$ . Коэффициент теплоотдачи с поверхности теплоизоляционного покрытия Корунд® Фасад в данных условиях —  $1.15~Bm/(M^2 \cdot {}^{\circ}C)$ .

Но стоит также отметить, что в данном опыте присутствует доля погрешностей, связанных с температурными колебаниями воздуха (ночью температура доходила до -25 °C, в то время как в дневное время температура повышалась до -12 °C). Поэтому для большей точности и полноты эксперимента рекомендуется проводить все испытания как минимум 7 дней подряд с установкой автоматизированного самописца (данные испытания за отсутствием такой возможности проводились экспресс-замерами в течении 1 дня). Кроме того, температурный режим на время всего испытания должен быть относительно ровный (без резких колебаний между температурой в дневное и ночное время суток).

# <u>5 Исследование теплозащитных свойств покрытия "Корунд®-Классик"</u> при нагреве

#### 5.1 Общие данные

Наиболее простым и наглядным экспериментом является нагрев стальной пластины, которая покрыта композицией «Корунд $\mathbb{R}$ ». Такой эксперимент позволяет исследовать работу материала на горячих поверхностях.

В эксперименте было использовано следующее оборудование:

- 1. Стальная пластина толщина 3 мм, размер 300х400 мм.
- 2. Лабораторная плита с точностью нагрева до 0,1 °C.
- 3. Измеритель температуры Elcometer 319.

На стальную пластину толщиной 3 мм было нанесено теплоизоляционное покрытие "Корунд®-Классик" толщиной 1,5 мм. Покрытие наносилось послойно с толщиной одного слоя 0,3 мм. Время технологического перерыва каждого слоя составило 24 ч.

Задача опыта — экспериментальное определение коэффициента теплопроводность теплоизоляционного слоя Корунд® на основании замера температуры поверхностного слоя теплоизоляционного покрытия и плотности теплового потока с поверхности тепловой изоляции.



Рис.5.1 — Общий вид установки

### 5.2 Методика проведения эксперимента

На лабораторную плиту устанавливается металлическая пластина размером 300х400 мм (пластина закрывает всю площадь нагревательного элемента плиты, чтобы свести к минимуму влияние конвективных потоков от нагретой поверхности плиты).

Нагрев пластины производится ступенчато с интервалами времени для релаксации температуры с постепенным повышением температуры до +100 °C.

Фиксация температуры металла происходит с помощью встроенного в лабораторную плиту температурного датчика, показания которого выводятся на дисплей плиты.

Измерения проводятся через 3 часа после достижения температуры +100°C (для равномерного нагрева и распределения температуры).

Результаты проведенных измерений приведены ниже:

Температура окружающего воздуха = +26,6 °C

Температура нагрева лабораторной плиты = +100 °C;

Температура на поверхности теплоизоляционного покрытия Корунд® = +47,3 °C

# 5.3 Обработка результатов

По результатам измерений проведены вычисления формуле теплопроводности:

$$\lambda = \frac{\delta \cdot \alpha_{H} \cdot (\tau - t_{H})}{t_{e} - \tau}$$
 (5.1),

где  $\delta$  – толщина теплоизоляционного слоя Корунд® (в среднем 1,5 мм);

 $\alpha_{\text{н}}$  — коэффициент теплоотдачи от наружной поверхности теплоизоляционного слоя Корунд® (взят из предыдущего лабораторного измерения 1,38 BT/м2 °C);

т — температура поверхности теплоизоляционного слоя Корунд®, °С;

t<sub>н</sub> — температура окружающего воздуха на момент проведения замеров, °С;

t<sub>в</sub> — температура нагрева лабораторной плиты, °С;

#### Вывод:

В результате проведения эксперимента и обработки полученных данных, получен коэффициент теплопроводности ЖКТ Корунд $\mathbb{R}$ , равный 0.0008~Bm/m  $^{\circ}C$ 

Несмотря на то, что данный показатель нельзя брать за расчетный вследствие погрешностей условий и средств измерений, однако данный коэффициент соотносится с полученными ранее данными, а также с заявленным производителем  $(0,0012\ Bm/m\ ^{\circ}C)$  в рамках погрешности условий и средств измерения.

# ЗАКЛЮЧЕНИЕ

- 1. Жидкая керамическая композиция "Корунд®" является эффективным теплоизоляционным материалом. Коэффициент теплопроводности этого материала по данным проведенных выше испытаний в указанных условиях составляет в среднем  $0,001~Bm/M \cdot {}^{o}C$ .
- 2. Кроме того в ходе экспериментов был получен коэффициент теплоотдачи с наружной поверхности тепловой изоляции Корунд®, который составил *от* 1,15 *до* 1,38  $Bm/(m^2.°C)$  в данных условиях проведения испытаний в рамках погрешности приборов и средств измерений и условий измерения.
- 3. Жидкая керамическая теплоизоляция марки "Корунд®" может быть рекомендована в качестве эффективной теплоизоляции для "горячих" теплоносителей с температурой до 200° С, так как реально снижает температуру поверхности до безопасной по санитарным нормам (до 45-55°С), то есть может быть рекомендована для теплоизоляции паропроводов, котлов, объектов энергетического назначения, резервуаров для хранения нефтепродуктов и других металлических конструкций. Данный материал может быть также рекомендован для изоляции труб холодного водоснабжения с целью устранения конденсации на поверхности труб. Кроме того, покрытие "Корунд®" может быть использована для улучшения теплотехнических свойств оконных откосов, межпанельных стыков и других мест, где наблюдаются "мостики холода".